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Abstract

We address the global trajectory planning problem of non-
holonomic mobile robots in environments with static and
dynamic obstacles. The global trajectory is composed of
regional feasible trajectories which satisfy the dynamics of
the robot kinematic model. Piecewise constant parame-
terization is used to construct regional feasible trajectory
and steering control, and collision avoidance criterion is de-
rived. Performance considered in the paper include robot
safety, geometry-based criteria, time-based criteria, and
physics-based criteria. Regional analytic trajectory solu-
tions facilitate performance evaluation of the global trajec-
tory. Simulations show a good performance of the planned
trajectory using the proposed scheme.

Keywords: Motion planning, nonholonomic system, dy-
namic obstacle, parameterized trajectory, steering control.

1 Introduction

In many applications of mobile robots such as surface min-
ing and space exploration, a prior map exists at certain
degree of accuracy. The performance in concern for the
motion planner usually includes:

1. Safety: The robot should avoid any dangerous terrain
which causes static instability of the robot by certain
margins;

2. Geometry-based criteria: criteria that relate to the
geometry, such as shortest distance;

3. Time-based criteria: criteria that are a function of
time, such as shortest time;

4. Physics-based criteria: criteria depending on the
physical configuration of the robot, such as optimal
fuel or energy.

Although path planning and motion control are closely re-
lated in the robot navigation problem, they are usually
treated as two separate problems in much of the existing
literature. Path planning is the determination of the ge-
ometric path points for the mobile robots to track, and
motion control is the determination of the physical input
to the robot motion components. These issues are typically
discussed using methods in different areas such as those in
artificial intelligence and control theory. Such a separation
makes it difficult to address robot performance in a com-
plete application, since the discrete geometric path points
planned in the first step cannot be efficiently tracked in the
second step due to the nonholonomic motion constrains of
the robots, thus losing the meaning of optimization in each
step. In this paper, we propose a new scheme to generate
global feasible trajectory for nonholonomic mobile robots,
and provide preliminary evaluation of performance as de-
fined above.

It is well known that motion planning for mobile robots has
not been an easy task even in the absence of obstacles, due
to the facts that nonholonomic constraints of mobile robots
(kinematic constraints) make time derivatives of configura-
tion variables of the system non-integrable, and any given
path in the configuration space does not necessarily corre-
spond to a feasible path for the nonholonomic system. To
make the planned path trackable by nonholonomic robots,
we introduce feasible trajectories which accounts for the
kinematic constrains of the robots and are parameterized
for a collision-free solution in the environment with both
static and dynamic obstacles. And it is natural to expect
that a global planned path is composed of segments of such
feasible trajectories.

D* search ([1]) has been recognized as an effective global
path searching method which returns sequences of path
points in known or partially known environment. As
used in [2], a complete navigation system should integrate
the local and global navigation systems: the global sys-
tem pre-plan a global path and incrementally search new
paths when discrepancy with the map occurs; the local



system uses onboard sensors to detect and avoid unpre-
dictable obstacles. However, the steering arbiter method
used in [2] simply votes a weighted sum of global and lo-
cal steering commands, which is feasible in practice but
provide no performance guarantees. A novel regional tra-
jectory generation algorithm was recently proposed in [3]
for nonholonomic mobile robots in a dynamic environment.
Closed-form analytic solutions are provided by employing
the polynomial inputs. In this paper, we provide an inter-
face of combining the global path search and regional tra-
jectory generation in environments containing static and
dynamic obstacles, and provide analytic performance de-
viation analysis from the lower bound of optimal solu-
tions. The paper combines recent techniques presented
in [3, 4, 5, 6].

The remainder of the paper is organized as follows. In Sec-
tion 2, the model of a nonholonomic car-like mobile robot
is first transformed into the chained-form, and the feasible
trajectory is defined satisfying both boundary conditions
imposed and dynamics of the robot kinematic model. The
steering paradigm is explicitly constructed for a given feasi-
ble trajectory. Then in Section 3, motion planning scheme
will be presented in detail. Performance evaluation of the
proposed motion planning scheme will be discussed in Sec-
tion 4. In Section 5, simulation results will be shown. And
finally we conclude with brief remarks in Section 6.

2 Problem Formulation and Pa-
rameterized Feasible Trajecto-
ries

Assumptions of our study are stated as follows:

Assumptions

1. The robot under consideration is represented by a 2-
dimensional circle with radius R, as shown in Figure
1.

2. The robot operates in a 2D environment with static
and dynamic obstacles. The ithe obstacle is repre-
sented by a circle with radius ri. For a moving obsta-
cle, the center is time varying and moving with linear
velocity vector.

3. A pre-defined map exists with static obstacle locations
stored.

4. The robot has an assigned goal, and knows its start
and goal positions.

5. The robot onboard sensors detect the dynamic obsta-
cles as it goes.
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Figure 1: A car-like robot.

The problem under concern is defined as follows:

Find feasible trajectories for the robot, enrouting from its
start position to its goal position, without collisions with
static and dynamic obstacles, while satisfying both bound-
ary conditions imposed and dynamics of the kinematic
model of the nonholonomic motion.

2.1 Nonholonomic Kinematic Model

We consider a car-like mobile robot whose front wheels are
steering wheels and rear wheels are driving wheels but have
a fixed forward orientation. The state space representation
of the kinematic model taking nonholonomic constrains is
given by (see [3] for detail derivation):
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where q = [x y θ φ] is the state vector: [x y] represents
the Cartesian coordinates of the guide point, θ is the ori-
entation of the robot body with respect to the x-axis, φ is
the steering angle; l is the distance between the two wheel-
axle centers, ρ is the radius of back driving wheel; u1 is the
angular velocity of the driving wheel, and u2 is the steer-
ing rate of front guiding wheel. The range of φ is limited
to be within

(−π
2 , π

2

)
due to singularity, and θ is within(−π

2 , π
2

)
to ensure an one-to-one map of the coordinate

transformation.



The kinematic model (1) can be transformed into the well-
defined chained-form as:

ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1 (2)

under the following coordinate and input transformations:

z1 = x − l

2
cos(θ)

z2 =
tan(φ)

l cos3(θ)
z3 = tan(θ)

z4 = y − l

2
sin(θ), (3)

u1 =
v1

ρ cos(θ)

u2 = − 3 sin(θ)
l cos2(θ)

sin2(φ)v1

+l cos3(θ) cos2(φ)v2. (4)

As pointed out in [3], the chained forms such as (2) have
been used as a canonical form to describe nonholonomic
systems (see [7]), and different steering schemes can be
applied for such chained form systems, such as, sinusoidal
steering, polynomial steering, piecewise constant steering
(see [8]). In the following, we use piecewise constant pa-
rameterization to define trajectory and steering control.

2.2 Parameterized Feasible Trajectories

As defined in [3], we say a trajectory is feasible if it satis-
fies both boundary conditions imposed and dynamics of the
kinematic model.

Given a set of boundary conditions with

q(t0) = q0 = [x0, y0, θ0, φ0],
q(tf ) = qf = [xf , yf , θf , φf ], (5)

the feasible trajectories are represented by

y = F (x − 0.5l cos(θ)) + 0.5l sin(θ); (6)

By (3), in the transformed z state space, the boundary
conditions are

z0 = [z0
1 , z0

2 , z0
3 , z0

4 ], zf = [zf
1 , zf

2 , zf
3 , zf

4 ], (7)

and the feasible trajectories are

z4 = F (z1), (8)

where F is a parameterized sixth-order polynomial taking
the following form

F (z1) = af(z1)
=

[
a0 a1 a2 a3 a4 a5 a6

]
· [ 1 z1 z2

1 z3
1 z4

1 z5
1 z6

1

]T (9)

By imposing the boundary points and their slopes and
curvature (see [3] for detail derivations), the feasible tra-
jectories are parameterized in terms of a6 as

z4 =
[

B−1(Y − Aa6)
a6

]T

f(z1) (10)
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.

It is shown in [3] that as long as z0
1 �= zf

1 , the feasible
trajectories are achievable by steering paradigm (shown in
the next subsection).

Note that in (10), a6 is a free-chosen parameter which will
be determined by collision avoidance criterion. By repre-
senting the feasible trajectories in terms of the parameter
a6 as (10), we increase the freedom of maneuver of the
robot to account for the geometric constrains due to ob-
stacles (which include static and dynamic obstacles).

2.3 Steering Paradigm

We apply a polynomial input for the steering paradigm,
that is,

v1(t) = C,

v2(t) = C0 + C1t + C2t
2 + C3t

3 (11)



where C,C0, C1, C2, C3 are constants.

If we choose

v1(t) =
zf
1 − z0

1

T
(12)

where T is the time that takes the robot to get to qf from
q0. Then we can obtain the steering input v2(t) to achieve
the feasible path (10) as the following

v2(t) = 6(a3 + 4a4z1 + 10a5z
2
1 + 20a6z

3
1)v1

+24(a4 + 5a5z1 + 15a6z
2
1)tv2

1

+60(a5 + 6a6z1)t2v3
1 + 120a6t

3v4
1 . (13)

The detail derivation to get (13) is given in [3].

Note that for any given feasible trajectories, the analytic
steering function is explicitly constructed as above.

2.4 Obstacle Avoidance Criterion

2.4.1 Static Obstacles

As noted in Subsection 2.2, the open-choosing parame-
ter a6 provides a novel mechanism for combining the ge-
ometric constrains due to obstacles with the feasible tra-
jectories. Given k static obstacles which is centered at
(xi

obstacle, y
i
obstacle), i = 1, 2, . . . , k in the environment, the

collision avoidance criterion can be expressed as

min
x∈[x0,xf ]

(x − xi
obstacle)

2 + (y − yi
obstacle)

2

≥ (R + ri)2, i = 1, 2, . . . , k (14)

where (x, y) is the robot position along the feasible path,
R is the radius of the robot, and ri is the radius of the
obstacles, assuming both the robot and obstacles as circles.

From the coordinate transformation (3), all possible loca-
tions of the point (x, y) are on the right semi-circle cen-
tered at (z1, z4) and of radius l/2 for θ ∈ (−π

2 , π
2

)
. So the

obstacle avoidance criterion (14) in the x-y plane can be
transformed into the z plane as

min
z1∈[z0

1 ,zf
1 ]

(z1 − xi
obstacle)

2 + (z4 − yi
obstacle)

2

≥ (R + ri +
l

2
)2, i = 1, 2, . . . , k (15)

Substitute the analytic express of the feasible trajectories
(10) in to (15), we can obtain the following second-order
inequality in terms of a6:

min
z1∈[z0

1 ,zf
1 ]

g2(z1)a2
6 + g1i(z1)a6 + g0i(z1) ≥ 0,

i = 1, 2, . . . , k (16)

where

g2(z1) =
[
z6
1 − f̃(z1)B−1A

]2

,

g1i(z1) = 2
[
z6
1 − f̃(z1)B−1A

]
·
[
f̃(z1)B−1Y − yi
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]
,

g0i(z1) =
[
f̃(z1)B−1Y − yi
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]2

+(z1 − xi
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2 − (R + ri +
l

2
)2;

f̃(z1) =
[

1 z1 z2
1 z3

1 z4
1 z5

1

]
. (17)

Therefore by choosing the parameter a6 to satisfy (16), the
resulting trajectory is a feasible trajectory without colli-
sion to any of the static obstacles.

2.4.2 Dynamic Obstacles

To deal with the dynamic obstacles which is detected by
the onboard sensors real time, a set of regional collision
avoidance conditions can be derived based on equations
(15) and (16). The idea is to express z1 as a discrete
function for each sampling period, and represent the ob-
stacles by piecewise constant velocities. Then piecewise
constant parameterization of the feasible trajectories can
be obtained to get the closed-form solution. The detail
derivation and results are given in [3].

3 Motion Planning Scheme

The motion planning scheme is divided into sequential
modules which are described in the following subsections.

3.1 Global D* Search

The D∗ search algorithm, which is a dynamic version of
A∗, was proposed in [1, 9]. It produces an optimal path
from the start position to the goal in the sense of mini-
mizing a pre-defined cost function. It has the capability of
rapid replanning, and has been used in real time planning
in partially known environments with challenging terrains.
As in A∗, its efficiency is highly determined by the chosen
cost function. The cost function we use for D∗ path plan-
ning is the following:

fpp = ρ + d (18)



where ρ is a large value if there is any obstacle penetrated
by the path, and 0 otherwise; d is the Euclidean distance.
Such a cost function guarantees that D∗ returns an opti-
mal path that avoids static obstacles, and is the shortest
possible path if one exists. Note that the obstacle size is
enlarged by the size of the robot and the safety margin
pre-defined.

The output of this module is a path P , which consists of
a sequence of geometric points (x, y), in the resolution of
the grid of the environmental map.

Figure 2 shows such a path.

3.2 Way Points Generation

After we get the discrete path sequences, we want to gen-
erate a set of way points that will be good enough but
not necessarily pass though every path points. An intu-
ition of a “good” solution is that the way points are very
close to the adjacent obstacle so that the constraints are
active. Therefore, we choose k way points on the global
path which are the closest points corresponding to each
obstacle. If there are more than one points that are clos-
est to the obstacle, we can pick the middle of them or any
of them without sacrificing the performance much as long
as the magnitude of obstacle sizes are relatively small in
the global setting.

The output of this module is a set of points, and their
slopes and curvatures:

(xj , yj , θj , φj), j = 0, 1, 2, . . . , k + 1

with the first one is the global start point of the robot and
the last one is the global goal point assuming there are k
static obstacles along the path in the map.

3.3 Feasible Trajectories Generation

After the way points are available, we generate feasible
trajectories taking every two adjacent way points as the
boundary conditions using the techniques described in Sec-
tions 2.2 and 2.4. That is, for every segment of feasible
trajectory, we need to choose the design parameter a6 to
ensure that the smooth trackable trajectory does not pen-
etrate the static obstacles.

3.4 Avoiding Dynamic Obstacles Region-
ally

The onboard sensors of the robot detect the moving ob-
stacles and the robot online re-generates the trajectory to
avoiding the collision. This can be done by changing the
design parameter a6 accordingly which provides more free-
dom of maneuver for the robot. Assuming the robot sensor
range is smaller than each pre-generated path segment de-
noted above, the techniques in [3] can be directly applied.

4 Performance Evaluation

4.1 Safety

Safety is quantified by safety margin. In the first module of
D∗ search, we enlarge each obstacle by a radius of d1 + R,
where d1 is the so-defined “safety margin” and R is the
robot radius, so that the returned path points and the
way-points are at least d1 + R away from the obstacles.
Then in the module of “feasible trajectory generation”, we
also include the safety margin d1 in the ri (the radius of the
ith obstacle) term, so that from equation (14), the feasible
trajectory is d1 + R away from the obstacles.

4.2 Path Length

The path length returned by D* search can be directly
computed by

L1 =
N−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (19)

where (xi, yi) are the coordinates of path points returned
by the D* search, and N is the number of points.

L1 provides the lower bound of an optimal path (short-
est path). If the grid resolution is fine enough comparing
with the global magnitude, L1 approximates to the short-
est path. Note that in practice, to reduce the computa-
tional expense of the search, instead of using the regular
grid, framed-quadtree can be used for the search, see [10].

Since the feasible trajectories generated are expressed by
analytic polynomial functions, we can now calculate the
length of the feasible trajectories.

For every feasible trajectory segment, the length of the



trajectory is

L2 =
∫ t0+T

t0

√
ẋ2 + ẏ2dt (20)

where (x, y) is on the feasible trajectory and satisfies the
kinematic constrains of the nonholonomic systems. Due to
the coordinate transformation described in Section 2, we
can obtain

L2 ≤
∫ t0+T

t0

[√
ż1

2 + ż4
2 +

l

2

(
θ̇
)]

dt

=
∫ t0+T

t0

√
ż1

2 + ż4
2dt +

l

2
(θf − θ0)

=
∫ t0+T

t0

ż1f(z1)dt +
l

2
(θf − θ0) (21)

where

f(z1) =
[
1 +

(
a1 + 2a2z1 + 3a3z

2
1 + 4a4z

3
1

+5a5z
4
1 + 6a6z

5
1

)2
] 1

2

From (20) or (21), the deviation from the lower bound of
the optimal solution L1 can be calculated.

Since the way points generated by the first step D* search
are based on shortest path criteria, the deviation of the
length of the feasible trajectory is limited from the lower
bound of shortest path. It should be pointed out that the
feasible trajectories generated above using polynomials are
not shortest paths between the two adjacent way points.
Results on shortest path for nonholonomic robots are given
in [11], where it is shown that shortest path motion could
be achieved by concatenations of pieces from a 48 three-
parameter trajectory sets. It is obviously not an easy task
to generate such feasible shortest paths. We advocate the
idea of finding sub-optimal solutions instead of an opti-
mal one. The polynomial based trajectory presented above
provides such a sub-optimal solution. Furthermore, it can
avoid regional moving obstacles.

4.3 Time-Based Criteria

If the robot velocity is fixed, shortest distance path and
shortest time path are equivalent. In the cases that quick-
est path is sought in terms of least zig-zag motion, different
cost functions in D* search can be chosen so that the way
points generated reflect such criteria. Due to space limit,
such issues will be reported separately.

4.4 Physical-Based Criteria

Using the proposed scheme, steering controls u1, u2 in orig-
inal coordinates can be obtained by submitting (12) and
(13) into (4). Since steering controls are generated analyt-
ically, energy spent on the motion can be calculated based
on the dynamic model of the robot (which is not presented
here for the space limit). It is then possible to compare
different trajectories based on energy efficiency.

In summary, the decomposition of the global path into
regional segments and the analytic construction of regional
trajectories facilities the performance analysis.

5 Simulations

In this section, we demonstrate simulation results for a
nonholonomic mobile robot navigating in an environment
with static and moving obstacles.

In Figure 2, it shows the path sequences by D* search, and
the polynomial based feasible trajectory generated through
way points. The global path is decomposed into five path
segments, where the parameter a6 is zero for each segment
to account for the static obstacles. Note that since the
range of definition for angles θ, φ is

(−π
2 , π

2

)
, the global

coordinate needs to be rotated between the first three path
segments, which causes trajectory discontinuity.

The path length returned by D* search is 63.80, and the
length of the feasible trajectory is 61.86. It can be seen
that the polynomial based trajectory is good enough to
match the shortest path. (Note that the grid resolution
for conducting D* search is not fine enough so the path
points returned has bigger length.)

In Figure 3, moving obstacles are detected by robot on-
board sensors while the robot navigates on the last two
path segments. It shows that the original planned path
collides with the moving obstacles. The circles are drawn
every 5 seconds for the position of the robot (big circle)
and the obstacle (small circle) with the same starting time.

The following setting are used in the simulation:

• Robot parameters: R = 1, l = 0.8, ρ = 0.2.

• Moving obstacles: ri = 0.5, for i = 1, 2.
Moving obstacle 1 (left): center: [23, 15], velocity:
[0.1, 0.2].
Moving obstacle 2 (right): center: [45, 20], velocity:
[−0.1,−0.1].



In Figure 4, a new collision free path is shown. The calcu-
lated trajectory parameter a6 for the second last segment is
9.4086∗10−6, and for the last segment is a6 = 4.9973∗10−6.

In Figure 5, the robot detects that obstacle 2 changes its
velocity at t0 + 20 seconds (t0 is the time the robot starts
on the same path segment), and re-calculate a new path
accordingly (collision occurs if following the old path). The
parameter settings used are:

• Center of obstacle 2: [50, 20],

• Original velocity at t = t0: [−0.15,−0.1],

• New velocity at t = t0 + 20: [0.15,−0.29]

The trajectory parameters a6 for the last path segment are
calculated to be:

• At t = t0, a6 = 4.6054 ∗ 10−6;

• At t = t0 + 20, a6 = −5.3385 ∗ 10−4.

The path length in this case is 75.03. We can see that
by carefully choosing the design parameter a6, dynamic
obstacles are avoided.

Figures 6 and 7 show the time history of robot orientation
angle θ(t), steering angle φ(t), and steering controls u1, u2

respectively, for the last two path segments according to
the trajectory shown in Figure 5.
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Figure 2: Global path: points denoted by circles are the
path sequences returned by D* search; points denoted by
solid circles are way-points; the solid line is global trajec-
tory. The shaded areas are static obstacles.

6 Conclusions

In this paper, we have presented a new global motion
planning algorithm for the nonholonomic mobile robots
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Figure 3: Collision path: motion of regional moving ob-
stacles are denoted by series of small circles; motion of the
robot is denoted by series of big circles. The arrow denotes
the direction of motion.
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Figure 4: Collision-free path: constant speed moving ob-
stacles.
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Figure 5: Collision-free path: obstacle changes velocity.
Dashed line denotes old path; solid line denotes new path.
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Figure 6: Robot orientation angle θ(t) (solid line) and
steering angle φ(t) (dashed line) for the last two path seg-
ments.
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Figure 7: Steering controls: u1(t) (solid line) and u2(t)
(dotted line).

in the presence of static and dynamic obstacles. Global
D* search is firstly performed and discrete optimal path
sequences are returned. Due to robot nonholonomic kine-
matics, the optimal path sequences can not be physically
tracked by the robot. We then choose way-points from the
global path and connect them using feasible trajectories.
The feasible trajectory is defined to satisfy both bound-
ary conditions imposed and dynamics of the robot kine-
matic model. Piecewise constant parameterization is used
to construct feasible trajectory and steering control, and
their solutions are obtained in closed-form. Representing
moving obstacles by piecewise constant velocities, collision
avoidance criterion is derived and combined in feasible tra-
jectory construction. The regional analytic solutions facil-
itate performance evaluation of the global trajectory. The
planned global trajectory is a sub-optimal solution, while
the optimal one is very difficult to obtain for the nonholo-
nomic mobile robots. Simulation results are shown and
good performance is observed.
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